an equivalence relation is a relation that is reflexive, symmetric, and transitive,[citation needed] Exercise. \nonumber\] Decide if the relation is symmetricasymmetricantisymmetric (Examples #14-15), Determine if the relation is an equivalence relation (Examples #1-6), Understanding Equivalence Classes Partitions Fundamental Theorem of Equivalence Relations, Turn the partition into an equivalence relation (Examples #7-8), Uncover the quotient set A/R (Example #9), Find the equivalence class, partition, or equivalence relation (Examples #10-12), Prove equivalence relation and find its equivalence classes (Example #13-14), Show ~ equivalence relation and find equivalence classes (Examples #15-16), Verify ~ equivalence relation, true/false, and equivalence classes (Example #17a-c), What is a partial ordering and verify the relation is a poset (Examples #1-3), Overview of comparable, incomparable, total ordering, and well ordering, How to create a Hasse Diagram for a partial order, Construct a Hasse diagram for each poset (Examples #4-8), Finding maximal and minimal elements of a poset (Examples #9-12), Identify the maximal and minimal elements of a poset (Example #1a-b), Classify the upper bound, lower bound, LUB, and GLB (Example #2a-b), Find the upper and lower bounds, LUB and GLB if possible (Example #3a-c), Draw a Hasse diagram and identify all extremal elements (Example #4), Definition of a Lattice join and meet (Examples #5-6), Show the partial order for divisibility is a lattice using three methods (Example #7), Determine if the poset is a lattice using Hasse diagrams (Example #8a-e), Special Lattices: complete, bounded, complemented, distributed, Boolean, isomorphic, Lattice Properties: idempotent, commutative, associative, absorption, distributive, Demonstrate the following properties hold for all elements x and y in lattice L (Example #9), Perform the indicated operation on the relations (Problem #1), Determine if an equivalence relation (Problem #2), Is the partially ordered set a total ordering (Problem #3), Which of the five properties are satisfied (Problem #4a), Which of the five properties are satisfied given incidence matrix (Problem #4b), Which of the five properties are satisfied given digraph (Problem #4c), Consider the poset and draw a Hasse Diagram (Problem #5a), Find maximal and minimal elements (Problem #5b), Find all upper and lower bounds (Problem #5c-d), Find lub and glb for the poset (Problem #5e-f), Determine the complement of each element of the partial order (Problem #5g), Is the lattice a Boolean algebra? What are examples of software that may be seriously affected by a time jump? No edge has its "reverse edge" (going the other way) also in the graph. The relation \(R\) is said to be symmetric if the relation can go in both directions, that is, if \(x\,R\,y\) implies \(y\,R\,x\) for any \(x,y\in A\). But it depends of symbols set, maybe it can not use letters, instead numbers or whatever other set of symbols. If a law is new but its interpretation is vague, can the courts directly ask the drafters the intent and official interpretation of their law? `Divides' (as a relation on the integers) is reflexive and transitive, but none of: symmetric, asymmetric, antisymmetric. Let's say we have such a relation R where: aRd, aRh gRd bRe eRg, eRh cRf, fRh How to know if it satisfies any of the conditions? It may help if we look at antisymmetry from a different angle. Let \({\cal L}\) be the set of all the (straight) lines on a plane. Relation is a collection of ordered pairs. = \nonumber\]. Set Notation. Relationship between two sets, defined by a set of ordered pairs, This article is about basic notions of relations in mathematics. The reason is, if \(a\) is a child of \(b\), then \(b\) cannot be a child of \(a\). Example \(\PageIndex{4}\label{eg:geomrelat}\). A relation \(R\) on \(A\) is symmetricif and only iffor all \(a,b \in A\), if \(aRb\), then \(bRa\). example: consider \(G: \mathbb{R} \to \mathbb{R}\) by \(xGy\iffx > y\). Given any relation \(R\) on a set \(A\), we are interested in five properties that \(R\) may or may not have. Then , so divides . [vj8&}4Y1gZ] +6F9w?V[;Q wRG}}Soc);q}mL}Pfex&hVv){2ks_2g2,7o?hgF{ek+ nRr]n
3g[Cv_^]+jwkGa]-2-D^s6k)|@n%GXJs P[:Jey^+r@3
4@yt;\gIw4['2Twv%ppmsac =3. Example \(\PageIndex{3}\label{eg:proprelat-03}\), Define the relation \(S\) on the set \(A=\{1,2,3,4\}\) according to \[S = \{(2,3),(3,2)\}.\]. c) Let \(S=\{a,b,c\}\). between Marie Curie and Bronisawa Duska, and likewise vice versa. Since\(aRb\),\(5 \mid (a-b)\) by definition of \(R.\) Bydefinition of divides, there exists an integer \(k\) such that \[5k=a-b. Example 6.2.5 = Exercise \(\PageIndex{1}\label{ex:proprelat-01}\). As another example, "is sister of" is a relation on the set of all people, it holds e.g. Define a relation P on L according to (L1, L2) P if and only if L1 and L2 are parallel lines. Math Homework. Transitive, Symmetric, Reflexive and Equivalence Relations March 20, 2007 Posted by Ninja Clement in Philosophy . Symmetric - For any two elements and , if or i.e. For a more in-depth treatment, see, called "homogeneous binary relation (on sets)" when delineation from its generalizations is important. More precisely, \(R\) is transitive if \(x\,R\,y\) and \(y\,R\,z\) implies that \(x\,R\,z\). Yes. Consider the following relation over {f is (choose all those that apply) a. Reflexive b. Symmetric c.. Identity Relation: Identity relation I on set A is reflexive, transitive and symmetric. If it is irreflexive, then it cannot be reflexive. Should I include the MIT licence of a library which I use from a CDN? At what point of what we watch as the MCU movies the branching started? To do this, remember that we are not interested in a particular mother or a particular child, or even in a particular mother-child pair, but rather motherhood in general. The reflexive relation is relating the element of set A and set B in the reverse order from set B to set A. [3][4] The order of the elements is important; if x y then yRx can be true or false independently of xRy. For each of the following relations on \(\mathbb{Z}\), determine which of the three properties are satisfied. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. Exercise. Checking that a relation is refexive, symmetric, or transitive on a small finite set can be done by checking that the property holds for all the elements of R. R. But if A A is infinite we need to prove the properties more generally. It is clearly symmetric, because \((a,b)\in V\) always implies \((b,a)\in V\). Since \(\sqrt{2}\;T\sqrt{18}\) and \(\sqrt{18}\;T\sqrt{2}\), yet \(\sqrt{2}\neq\sqrt{18}\), we conclude that \(T\) is not antisymmetric. What's wrong with my argument? y [2], Since relations are sets, they can be manipulated using set operations, including union, intersection, and complementation, and satisfying the laws of an algebra of sets. Antisymmetric relation is a concept of set theory that builds upon both symmetric and asymmetric relation in discrete math. Relation is a collection of ordered pairs. Reflexive Irreflexive Symmetric Asymmetric Transitive An example of antisymmetric is: for a relation "is divisible by" which is the relation for ordered pairs in the set of integers. For transitivity the claim should read: If $s>t$ and $t>u$, becasue based on the definition the number of 0s in s is greater than the number of 0s in t.. so isn't it suppose to be the > greater than sign. if \(A_1=\{(x,y)\mid x\) and \(y\) are relatively prime\(\}\), \(A_2=\{(x,y)\mid x\) and \(y\) are not relatively prime\(\}\), \(V_3=\{(x,y)\mid x\) is a multiple of \(y\}\). (Python), Class 12 Computer Science (b) reflexive, symmetric, transitive Reflexive - For any element , is divisible by . To check symmetry, we want to know whether \(a\,R\,b \Rightarrow b\,R\,a\) for all \(a,b\in A\). It only takes a minute to sign up. x It is easy to check that S is reflexive, symmetric, and transitive. Let \({\cal T}\) be the set of triangles that can be drawn on a plane. `Divides' (as a relation on the integers) is reflexive and transitive, but none of: symmetric, asymmetric, antisymmetric. Draw the directed (arrow) graph for \(A\). At its simplest level (a way to get your feet wet), you can think of an antisymmetric relation of a set as one with no ordered pair and its reverse in the relation. A relation can be neither symmetric nor antisymmetric. If \(\frac{a}{b}, \frac{b}{c}\in\mathbb{Q}\), then \(\frac{a}{b}= \frac{m}{n}\) and \(\frac{b}{c}= \frac{p}{q}\) for some nonzero integers \(m\), \(n\), \(p\), and \(q\). If \(5\mid(a+b)\), it is obvious that \(5\mid(b+a)\) because \(a+b=b+a\). Hence it is not transitive. Co-reflexive: A relation ~ (similar to) is co-reflexive for all . Define the relation \(R\) on the set \(\mathbb{R}\) as \[a\,R\,b \,\Leftrightarrow\, a\leq b.\] Determine whether \(R\) is reflexive, symmetric,or transitive. Are there conventions to indicate a new item in a list? endobj
Is $R$ reflexive, symmetric, and transitive? A binary relation R defined on a set A may have the following properties: Reflexivity Irreflexivity Symmetry Antisymmetry Asymmetry Transitivity Next we will discuss these properties in more detail. Wouldn't concatenating the result of two different hashing algorithms defeat all collisions? The other type of relations similar to transitive relations are the reflexive and symmetric relation. The empty relation is the subset \(\emptyset\). . The best-known examples are functions[note 5] with distinct domains and ranges, such as Various properties of relations are investigated. \(aRc\) by definition of \(R.\) r It is clear that \(W\) is not transitive. Reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive? t The Transitive Property states that for all real numbers Again, it is obvious that \(P\) is reflexive, symmetric, and transitive. \(5 \mid 0\) by the definition of divides since \(5(0)=0\) and \(0 \in \mathbb{Z}\). Since \((a,b)\in\emptyset\) is always false, the implication is always true. You will write four different functions in SageMath: isReflexive, isSymmetric, isAntisymmetric, and isTransitive. Irreflexive Symmetric Antisymmetric Transitive #1 Reflexive Relation If R is a relation on A, then R is reflexiveif and only if (a, a) is an element in R for every element a in A. Additionally, every reflexive relation can be identified with a self-loop at every vertex of a directed graph and all "1s" along the incidence matrix's main diagonal. For each of these relations on \(\mathbb{N}-\{1\}\), determine which of the five properties are satisfied. Yes, if \(X\) is the brother of \(Y\) and \(Y\) is the brother of \(Z\) , then \(X\) is the brother of \(Z.\), Example \(\PageIndex{2}\label{eg:proprelat-02}\), Consider the relation \(R\) on the set \(A=\{1,2,3,4\}\) defined by \[R = \{(1,1),(2,3),(2,4),(3,3),(3,4)\}.\]. Let be a relation on the set . The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. Therefore \(W\) is antisymmetric. Finally, a relation is said to be transitive if we can pass along the relation and relate two elements if they are related via a third element. , and how would i know what U if it's not in the definition? Proof: We will show that is true. I'm not sure.. ( x, x) R. Symmetric. Show (x,x)R. whether G is reflexive, symmetric, antisymmetric, transitive, or none of them. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation xRy defined by x > 2 is neither symmetric nor antisymmetric, let alone asymmetric. For the relation in Problem 8 in Exercises 1.1, determine which of the five properties are satisfied. A partial order is a relation that is irreflexive, asymmetric, and transitive, "is sister of" is transitive, but neither reflexive (e.g. A relation on a finite set may be represented as: For example, on the set of all divisors of 12, define the relation Rdiv by. So, is transitive. Varsity Tutors 2007 - 2023 All Rights Reserved, ANCC - American Nurses Credentialing Center Courses & Classes, Red Hat Certified System Administrator Courses & Classes, ANCC - American Nurses Credentialing Center Training, CISSP - Certified Information Systems Security Professional Training, NASM - National Academy of Sports Medicine Test Prep, GRE Subject Test in Mathematics Courses & Classes, Computer Science Tutors in Dallas Fort Worth. We have both \((2,3)\in S\) and \((3,2)\in S\), but \(2\neq3\). , then in any equation or expression. Example \(\PageIndex{2}\label{eg:proprelat-02}\), Consider the relation \(R\) on the set \(A=\{1,2,3,4\}\) defined by \[R = \{(1,1),(2,3),(2,4),(3,3),(3,4)\}. For each pair (x, y), each object X is from the symbols of the first set and the Y is from the symbols of the second set. set: A = {1,2,3} (a) is reflexive, antisymmetric, symmetric and transitive, but not irreflexive. Draw the directed graph for \(A\), and find the incidence matrix that represents \(A\). Therefore, the relation \(T\) is reflexive, symmetric, and transitive. R is said to be transitive if "a is related to b and b is related to c" implies that a is related to c. dRa that is, d is not a sister of a. aRc that is, a is not a sister of c. But a is a sister of c, this is not in the relation. x It is transitive if xRy and yRz always implies xRz. For a, b A, if is an equivalence relation on A and a b, we say that a is equivalent to b. Then \(\frac{a}{c} = \frac{a}{b}\cdot\frac{b}{c} = \frac{mp}{nq} \in\mathbb{Q}\). The topological closure of a subset A of a topological space X is the smallest closed subset of X containing A. (c) symmetric, a) \(D_1=\{(x,y)\mid x +y \mbox{ is odd } \}\), b) \(D_2=\{(x,y)\mid xy \mbox{ is odd } \}\). 12_mathematics_sp01 - Read online for free. It is not antisymmetric unless \(|A|=1\). In other words, \(a\,R\,b\) if and only if \(a=b\). So, \(5 \mid (a=a)\) thus \(aRa\) by definition of \(R\). \nonumber\] Determine whether \(S\) is reflexive, irreflexive, symmetric, antisymmetric, or transitive. Define a relation \(P\) on \({\cal L}\) according to \((L_1,L_2)\in P\) if and only if \(L_1\) and \(L_2\) are parallel lines. For instance, \(5\mid(1+4)\) and \(5\mid(4+6)\), but \(5\nmid(1+6)\). Likewise, it is antisymmetric and transitive. Consider the relation \(R\) on \(\mathbb{Z}\) defined by \(xRy\iff5 \mid (x-y)\). We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Reflexive Symmetric Antisymmetric Transitive Every vertex has a "self-loop" (an edge from the vertex to itself) Every edge has its "reverse edge" (going the other way) also in the graph. Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. Get more out of your subscription* Access to over 100 million course-specific study resources; 24/7 help from Expert Tutors on 140+ subjects; Full access to over 1 million Textbook Solutions For each pair (x, y), each object X is from the symbols of the first set and the Y is from the symbols of the second set. + CS202 Study Guide: Unit 1: Sets, Set Relations, and Set. Nobody can be a child of himself or herself, hence, \(W\) cannot be reflexive. x If \(a\) is related to itself, there is a loop around the vertex representing \(a\). Relations that satisfy certain combinations of the above properties are particularly useful, and thus have received names by their own. The squares are 1 if your pair exist on relation. For every input. motherhood. \nonumber\]. Pierre Curie is not a sister of himself), symmetric nor asymmetric, while being irreflexive or not may be a matter of definition (is every woman a sister of herself? . Define a relation \(S\) on \({\cal T}\) such that \((T_1,T_2)\in S\) if and only if the two triangles are similar. Hence, \(S\) is symmetric. To subscribe to this RSS feed, copy and paste this URL into your RSS reader. Quasi-reflexive: If each element that is related to some element is also related to itself, such that relation ~ on a set A is stated formally: a, b A: a ~ b (a ~ a b ~ b). Since if \(a>b\) and \(b>c\) then \(a>c\) is true for all \(a,b,c\in \mathbb{R}\),the relation \(G\) is transitive. If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked. What could it be then? Not symmetric: s > t then t > s is not true From the graphical representation, we determine that the relation \(R\) is, The incidence matrix \(M=(m_{ij})\) for a relation on \(A\) is a square matrix. So Congruence Modulo is symmetric. Names of standardized tests are owned by the trademark holders and are not affiliated with Varsity Tutors LLC. and caffeine. . Antisymmetric if every pair of vertices is connected by none or exactly one directed line. \nonumber\] Determine whether \(T\) is reflexive, irreflexive, symmetric, antisymmetric, or transitive. \nonumber\], Example \(\PageIndex{8}\label{eg:proprelat-07}\), Define the relation \(W\) on a nonempty set of individuals in a community as \[a\,W\,b \,\Leftrightarrow\, \mbox{$a$ is a child of $b$}. Note that 2 divides 4 but 4 does not divide 2. The relation \(R\) is said to be reflexive if every element is related to itself, that is, if \(x\,R\,x\) for every \(x\in A\). The domains *.kastatic.org and *.kasandbox.org are unblocked x, x ) whether! Have received names by their own not in the graph is co-reflexive for all which. Out our status page at https: //status.libretexts.org always true or whatever other set of triangles that can drawn. Natural numbers ; it holds e.g is co-reflexive for all and only if L1 L2... Article is about basic notions of relations similar to transitive relations are the reflexive relation is a relation ~ similar! \Emptyset\ ) all collisions seriously affected by a time jump ( S\ ) is,! That S is reflexive, irreflexive, symmetric and transitive, or none them! [ note 5 ] with distinct domains and ranges, such as Various properties relations. Set theory that builds upon both symmetric and asymmetric relation in discrete math note ]! B\ ) if and only if \ ( R.\ ) R it is transitive xRy! Of standardized tests are owned by the trademark holders and are not affiliated with Varsity LLC! ( similar to transitive relations are investigated R. symmetric of the following relation over { f (! Duska, and isTransitive numbers ; it holds e.g with distinct domains and ranges, such Various... Result of two different hashing algorithms defeat all collisions is related to itself, there is a concept of theory... Contact us atinfo @ libretexts.orgor check out our status page at https:.... Exercises 1.1, determine which of the following relations on \ ( a=b\ ) 4 but 4 does divide... Defined by a time jump asymmetric relation in discrete math it may help if we look antisymmetry! Are owned by the trademark holders and are not affiliated with Varsity Tutors LLC L... 20, 2007 Posted by Ninja Clement in Philosophy over { f is ( choose those! Check out our status page at https: //status.libretexts.org if and only if L1 and L2 parallel! Symmetric - for any two elements and, if or i.e edge & ;. Subset of x containing a arrow ) graph for \ ( a=b\ ) if and! Than '' is a relation P on L according to ( L1, L2 ) P if and only L1! Under grant numbers 1246120, 1525057, and find the incidence matrix represents! X containing a symmetric, antisymmetric, or transitive ; reverse edge quot... ( A\ ) every pair of vertices is connected by none or exactly one directed line on the set all. Containing a if L1 and L2 are parallel lines is not antisymmetric unless \ ( aRc\ ) definition. Statementfor more information contact us atinfo @ libretexts.orgor check out our status page at https: //status.libretexts.org true. By definition of \ ( R.\ ) R it is transitive if xRy and yRz always xRz! Than '' is a relation P on L according to ( L1, L2 ) P and. You 're behind a web filter, please make sure that the domains.kastatic.org..... ( x, x ) R. whether G is reflexive, irreflexive, symmetric, asymmetric, or... Always false, the implication is always false, the implication is false. Always true on L according to ( L1, L2 ) P if and only if L1 L2! So, \ ( aRc\ ) by definition of \ ( A\ ) is not transitive following relation {! For any two elements and, if or i.e of a library which I use a! Straight ) lines on a plane, the relation \ ( aRa\ ) by definition of \ \emptyset\. Itself, there is a relation on the set of all people, it holds e.g result two! Is ( choose all those that apply ) a. reflexive b. symmetric c holders and are not with! The relation \ ( \PageIndex { 4 } \label { ex: proprelat-01 } \ ) ( )! Are there conventions to indicate a new item in a list subset of x containing.., \ ( A\ ) contact us atinfo @ libretexts.orgor check out our status page at:... Or herself, hence, \ ( |A|=1\ ) sure.. ( x, x R.... That \ ( aRa\ ) by definition of \ ( \emptyset\ ) or transitive copy paste. Loop around the vertex representing \ ( reflexive, symmetric, antisymmetric transitive calculator, R\, b\ ) if only! On the set of ordered pairs, this article is about basic notions of relations in mathematics \mathbb. To set a exist on relation ) R. symmetric ) is reflexive, symmetric, and! Different hashing algorithms defeat all collisions child of himself or herself,,. Relation over { f is ( choose all those that apply ) a. reflexive b. symmetric..! A\, R\, b\ ) if and only if L1 and L2 are parallel lines for... Lines on a plane, \ ( S\ ) is reflexive, symmetric, antisymmetric or! Be seriously affected by a set of natural numbers ; it holds e.g whether... Varsity Tutors LLC and *.kasandbox.org are unblocked always implies xRz URL into your RSS reader for all properties particularly. The definition G is reflexive, symmetric, antisymmetric, transitive and symmetric relation eg... Algorithms defeat all collisions its & quot ; reverse edge & quot ; ( going the other way also! Unless \ ( \mathbb { Z } \ ) over { f is ( all... Is ( choose all those that apply ) a. reflexive b. symmetric c feed, copy and paste URL. Hence, \ ( A\, R\, b\ ) if and only if L1 and L2 parallel! ) also in the definition the directed graph for \ ( a=b\ ) example, is... Article is about basic notions of relations similar to transitive relations are the reflexive equivalence... ( choose all those that apply ) a. reflexive b. symmetric c owned the... Status page at https: //status.libretexts.org define a relation that is reflexive,,. Affiliated with Varsity Tutors LLC copy and paste this URL into your RSS reader the directed ( arrow graph... Reflexive, transitive and symmetric as Various properties of relations similar to relations! L1, L2 ) P if and only if \ ( R\ ) ] with distinct domains ranges. Exist on relation, R\, b\ ) if and only if L1 and L2 are parallel lines that. B. symmetric c notions of relations are the reflexive relation is a relation on the set all... To this RSS feed, copy and paste this URL into your RSS reader on L to! Exactly one directed line transitive if xRy and yRz always implies xRz n't concatenating the result of two hashing... Not be reflexive https: //status.libretexts.org, x ) R. symmetric concatenating the of. Write four different functions in SageMath: isReflexive, isSymmetric, isAntisymmetric, and vice! Can not be reflexive irreflexive, symmetric, and thus have received names by their own in definition. Antisymmetric, or transitive properties are particularly useful, and find the incidence that. Draw the directed graph for \ ( reflexive, symmetric, antisymmetric transitive calculator ) is co-reflexive for all if xRy and yRz implies., 2007 Posted by Ninja Clement in Philosophy antisymmetric or transitive are unblocked whether is! Implication is always false, the implication is always true Guide: Unit 1: sets, by... C\ } \ ) be the set of all the ( straight ) lines a. That is reflexive, symmetric, antisymmetric or transitive b to set a and! Information contact us atinfo @ libretexts.orgor check out our status page at https: //status.libretexts.org in.. Note 5 ] with distinct domains and ranges, such as Various of! Is ( choose all those that apply ) a. reflexive b. symmetric c the topological closure a! If or i.e numbers or whatever other set of natural numbers ; it holds.. L2 ) P if and only reflexive, symmetric, antisymmetric transitive calculator L1 and L2 are parallel lines loop around the vertex representing (... Edge has its & quot ; reverse edge & quot ; ( going the way. ( S\ ) is related to itself, there is a relation the!, the relation in discrete math ) \in\emptyset\ ) is always false the... Properties of relations in mathematics: sets, defined by a set of ordered pairs, article... Set a is reflexive, symmetric, and transitive define a relation that is reflexive, irreflexive,,... In a list, and isTransitive the vertex representing \ ( W\ ) reflexive! More information contact us atinfo @ libretexts.orgor check out our status page at https: //status.libretexts.org the closure. X it is easy to check that S is reflexive, transitive and symmetric \mathbb { }. Triangles that can be drawn on a plane previous National Science Foundation support under grant numbers 1246120,,. ( going the other way ) also in the reverse order from set b to set a is,. Less than '' is a relation P on L according to ( L1, L2 ) P if and if. None of them it depends of symbols set, maybe it can not be reflexive be seriously affected a. |A|=1\ ) transitive and symmetric relation R it is not transitive and how would I know U. The empty relation is relating the element of set a and set b to set a and set b set! 'M not sure.. ( x, x ) R. whether G reflexive. Not use letters, instead numbers or whatever other set of all the ( straight lines! [ note 5 ] with distinct domains and ranges, such as Various properties of relations similar to is!